Convex Hulls of Multidimensional Random Walks

نویسندگان

  • VLADISLAV VYSOTSKY
  • DMITRY ZAPOROZHETS
چکیده

Let Sk be a random walk in R such that its distribution of increments does not assign mass to hyperplanes. We study the probability pn that the convex hull conv(S1, . . . , Sn) of the first n steps of the walk does not include the origin. By providing an explicit formula, we show that for planar symmetrically distributed random walks, pn does not depend on the distribution of increments. This extends the well known result by Sparre Andersen (1949) that a one-dimensional random walk satisfying the above continuity and symmetry assumptions stays positive with a distribution-free probability. We also find the asymptotics of pn as n→∞ for any planar random walk with zero mean square-integrable increments. We further developed our approach from the planar case to study a wide class of geometric characteristics of convex hulls of random walks in any dimension d ≥ 2. In particular, we give formulas for the expected value of the number of faces, the volume, the surface area, and other intrinsic volumes, including the following multidimensional generalization of the Spitzer–Widom formula (1961) on the perimeter of planar walks: EV1(conv(0, S1, . . . , Sn)) = n ∑

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex hulls of random walks, hyperplane arrangements, and Weyl chambers

We give an explicit formula for the probability that the convex hull of an n-step random walk in R does not contain the origin, under the assumption that the distribution of increments of the walk is centrally symmetric and puts no mass on affine hyperplanes. This extends the formula by Sparre Andersen (Skand Aktuarietidskr 32:27–36, 1949) for the probability that such random walk in dimension ...

متن کامل

Shape and local growth for multidimensional branching random walks in random environment

We study branching random walks in random environment on the ddimensional square lattice, d ≥ 1. In this model, the environment has finite range dependence, and the population size cannot decrease. We prove limit theorems (laws of large numbers) for the set of lattice sites which are visited up to a large time as well as for the local size of the population. The limiting shape of this set is co...

متن کامل

Solving the Multidimensional Multiple-choice Knapsack Problem by constructing convex hulls

This paper presents a heuristic to solve the Multidimensional Multiple-choice Knapsack Problem (MMKP), a variant of the classical 0–1 Knapsack Problem. We apply a transformation technique to map the multidimensional resource consumption to single dimension. Convex hulls are constructed to reduce the search space to find the near-optimal solution of the MMKP. We present the computational complex...

متن کامل

Convex hulls of random walks: Large-deviation properties.

We study the convex hull of the set of points visited by a two-dimensional random walker of T discrete time steps. Two natural observables that characterize the convex hull in two dimensions are its perimeter L and area A. While the mean perimeter 〈L〉 and the mean area 〈A〉 have been studied before, analytically and numerically, and exact results are known for large T (Brownian motion limit), li...

متن کامل

Geometric Random Walks: A Survey∗

The developing theory of geometric random walks is outlined here. Three aspects — general methods for estimating convergence (the “mixing” rate), isoperimetric inequalities in Rn and their intimate connection to random walks, and algorithms for fundamental problems (volume computation and convex optimization) that are based on sampling by random walks — are discussed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017